3.40 \(\int \csc ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=138 \[ -\frac {5 a \cot (c+d x)}{8 d \sqrt {a \sin (c+d x)+a}}-\frac {5 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{8 d}-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d \sqrt {a \sin (c+d x)+a}}-\frac {5 a \cot (c+d x) \csc (c+d x)}{12 d \sqrt {a \sin (c+d x)+a}} \]

[Out]

-5/8*arctanh(cos(d*x+c)*a^(1/2)/(a+a*sin(d*x+c))^(1/2))*a^(1/2)/d-5/8*a*cot(d*x+c)/d/(a+a*sin(d*x+c))^(1/2)-5/
12*a*cot(d*x+c)*csc(d*x+c)/d/(a+a*sin(d*x+c))^(1/2)-1/3*a*cot(d*x+c)*csc(d*x+c)^2/d/(a+a*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {2772, 2773, 206} \[ -\frac {5 a \cot (c+d x)}{8 d \sqrt {a \sin (c+d x)+a}}-\frac {5 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{8 d}-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d \sqrt {a \sin (c+d x)+a}}-\frac {5 a \cot (c+d x) \csc (c+d x)}{12 d \sqrt {a \sin (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Csc[c + d*x]^4*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(-5*Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(8*d) - (5*a*Cot[c + d*x])/(8*d*Sqrt[a +
 a*Sin[c + d*x]]) - (5*a*Cot[c + d*x]*Csc[c + d*x])/(12*d*Sqrt[a + a*Sin[c + d*x]]) - (a*Cot[c + d*x]*Csc[c +
d*x]^2)/(3*d*Sqrt[a + a*Sin[c + d*x]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2772

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[((b*c - a*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]]), x]
+ Dist[((2*n + 3)*(b*c - a*d))/(2*b*(n + 1)*(c^2 - d^2)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \csc ^4(c+d x) \sqrt {a+a \sin (c+d x)} \, dx &=-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d \sqrt {a+a \sin (c+d x)}}+\frac {5}{6} \int \csc ^3(c+d x) \sqrt {a+a \sin (c+d x)} \, dx\\ &=-\frac {5 a \cot (c+d x) \csc (c+d x)}{12 d \sqrt {a+a \sin (c+d x)}}-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d \sqrt {a+a \sin (c+d x)}}+\frac {5}{8} \int \csc ^2(c+d x) \sqrt {a+a \sin (c+d x)} \, dx\\ &=-\frac {5 a \cot (c+d x)}{8 d \sqrt {a+a \sin (c+d x)}}-\frac {5 a \cot (c+d x) \csc (c+d x)}{12 d \sqrt {a+a \sin (c+d x)}}-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d \sqrt {a+a \sin (c+d x)}}+\frac {5}{16} \int \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx\\ &=-\frac {5 a \cot (c+d x)}{8 d \sqrt {a+a \sin (c+d x)}}-\frac {5 a \cot (c+d x) \csc (c+d x)}{12 d \sqrt {a+a \sin (c+d x)}}-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d \sqrt {a+a \sin (c+d x)}}-\frac {(5 a) \operatorname {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{8 d}\\ &=-\frac {5 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{8 d}-\frac {5 a \cot (c+d x)}{8 d \sqrt {a+a \sin (c+d x)}}-\frac {5 a \cot (c+d x) \csc (c+d x)}{12 d \sqrt {a+a \sin (c+d x)}}-\frac {a \cot (c+d x) \csc ^2(c+d x)}{3 d \sqrt {a+a \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 1.34, size = 285, normalized size = 2.07 \[ \frac {\csc ^{10}\left (\frac {1}{2} (c+d x)\right ) \sqrt {a (\sin (c+d x)+1)} \left (84 \sin \left (\frac {1}{2} (c+d x)\right )-10 \sin \left (\frac {3}{2} (c+d x)\right )-30 \sin \left (\frac {5}{2} (c+d x)\right )-84 \cos \left (\frac {1}{2} (c+d x)\right )-10 \cos \left (\frac {3}{2} (c+d x)\right )+30 \cos \left (\frac {5}{2} (c+d x)\right )-45 \sin (c+d x) \log \left (-\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )+1\right )+45 \sin (c+d x) \log \left (\sin \left (\frac {1}{2} (c+d x)\right )-\cos \left (\frac {1}{2} (c+d x)\right )+1\right )+15 \sin (3 (c+d x)) \log \left (-\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )+1\right )-15 \sin (3 (c+d x)) \log \left (\sin \left (\frac {1}{2} (c+d x)\right )-\cos \left (\frac {1}{2} (c+d x)\right )+1\right )\right )}{24 d \left (\cot \left (\frac {1}{2} (c+d x)\right )+1\right ) \left (\csc ^2\left (\frac {1}{4} (c+d x)\right )-\sec ^2\left (\frac {1}{4} (c+d x)\right )\right )^3} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[c + d*x]^4*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(Csc[(c + d*x)/2]^10*Sqrt[a*(1 + Sin[c + d*x])]*(-84*Cos[(c + d*x)/2] - 10*Cos[(3*(c + d*x))/2] + 30*Cos[(5*(c
 + d*x))/2] + 84*Sin[(c + d*x)/2] - 45*Log[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]]*Sin[c + d*x] + 45*Log[1 -
Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]*Sin[c + d*x] - 10*Sin[(3*(c + d*x))/2] - 30*Sin[(5*(c + d*x))/2] + 15*Log
[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]]*Sin[3*(c + d*x)] - 15*Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]*S
in[3*(c + d*x)]))/(24*d*(1 + Cot[(c + d*x)/2])*(Csc[(c + d*x)/4]^2 - Sec[(c + d*x)/4]^2)^3)

________________________________________________________________________________________

fricas [B]  time = 0.54, size = 361, normalized size = 2.62 \[ \frac {15 \, {\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) + 4 \, {\left (15 \, \cos \left (d x + c\right )^{3} + 5 \, \cos \left (d x + c\right )^{2} - {\left (15 \, \cos \left (d x + c\right )^{2} + 10 \, \cos \left (d x + c\right ) - 13\right )} \sin \left (d x + c\right ) - 23 \, \cos \left (d x + c\right ) - 13\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{96 \, {\left (d \cos \left (d x + c\right )^{4} - 2 \, d \cos \left (d x + c\right )^{2} - {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2} - d \cos \left (d x + c\right ) - d\right )} \sin \left (d x + c\right ) + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/96*(15*(cos(d*x + c)^4 - 2*cos(d*x + c)^2 - (cos(d*x + c)^3 + cos(d*x + c)^2 - cos(d*x + c) - 1)*sin(d*x + c
) + 1)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c
) - 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a) - 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x
+ c) - a)*sin(d*x + c) - a)/(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c
) - 1)) + 4*(15*cos(d*x + c)^3 + 5*cos(d*x + c)^2 - (15*cos(d*x + c)^2 + 10*cos(d*x + c) - 13)*sin(d*x + c) -
23*cos(d*x + c) - 13)*sqrt(a*sin(d*x + c) + a))/(d*cos(d*x + c)^4 - 2*d*cos(d*x + c)^2 - (d*cos(d*x + c)^3 + d
*cos(d*x + c)^2 - d*cos(d*x + c) - d)*sin(d*x + c) + d)

________________________________________________________________________________________

giac [A]  time = 0.71, size = 184, normalized size = 1.33 \[ -\frac {\sqrt {2} {\left (15 \, \sqrt {2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + \frac {4 \, {\left (60 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 80 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 33 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}\right )} \sqrt {a}}{96 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/96*sqrt(2)*(15*sqrt(2)*log(abs(-2*sqrt(2) + 4*sin(-1/4*pi + 1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(-1/4*pi
 + 1/2*d*x + 1/2*c)))*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c)) + 4*(60*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4
*pi + 1/2*d*x + 1/2*c)^5 - 80*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4*pi + 1/2*d*x + 1/2*c)^3 + 33*sgn(co
s(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4*pi + 1/2*d*x + 1/2*c))/(2*sin(-1/4*pi + 1/2*d*x + 1/2*c)^2 - 1)^3)*sqrt
(a)/d

________________________________________________________________________________________

maple [A]  time = 0.78, size = 158, normalized size = 1.14 \[ -\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (15 \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, a^{\frac {3}{2}} \left (\sin ^{2}\left (d x +c \right )\right )+15 \arctanh \left (\frac {\sqrt {-a \left (\sin \left (d x +c \right )-1\right )}}{\sqrt {a}}\right ) \left (\sin ^{3}\left (d x +c \right )\right ) a^{2}+10 \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \sin \left (d x +c \right ) a^{\frac {3}{2}}+8 \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, a^{\frac {3}{2}}\right )}{24 \sin \left (d x +c \right )^{3} a^{\frac {3}{2}} \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x)

[Out]

-1/24*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(15*(-a*(sin(d*x+c)-1))^(1/2)*a^(3/2)*sin(d*x+c)^2+15*arctanh((
-a*(sin(d*x+c)-1))^(1/2)/a^(1/2))*sin(d*x+c)^3*a^2+10*(-a*(sin(d*x+c)-1))^(1/2)*sin(d*x+c)*a^(3/2)+8*(-a*(sin(
d*x+c)-1))^(1/2)*a^(3/2))/sin(d*x+c)^3/a^(3/2)/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a \sin \left (d x + c\right ) + a} \csc \left (d x + c\right )^{4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^4*(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)*csc(d*x + c)^4, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {a+a\,\sin \left (c+d\,x\right )}}{{\sin \left (c+d\,x\right )}^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))^(1/2)/sin(c + d*x)^4,x)

[Out]

int((a + a*sin(c + d*x))^(1/2)/sin(c + d*x)^4, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a \left (\sin {\left (c + d x \right )} + 1\right )} \csc ^{4}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)**4*(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a*(sin(c + d*x) + 1))*csc(c + d*x)**4, x)

________________________________________________________________________________________